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Smart Grid: Advanced infrastructure leveraging information technologies
to enhance the current electrical power networks

US Dept. of Energy, “The smart grid: An introduction,” 2009. 

controllable resilient efficient participation

self-restoringsustainable green situational awareness

2



Enabling technology advances

Learning, optimization, 
and signal processing 

toolbox
sensing/metering

distributed generation
micro-grids

electric vehicles

renewables 

demand response communication 
networks

power 
electronics
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 Online power system state estimation (PSSE) 
 Semi-definite relaxation (SDR) for nonlinear PSSE
 Online convex optimization (OCO) via mirror descent algorithm 

 Real-time pricing for demand response (DR) 

 Full/partial (bandit) feedback

 Stochastic energy management

 Stochastic reactive power control
 Joint active and reactive power control
 Leveraging voltage regulation and inverter flexibilities

Roadmap
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Online PSSE
 Static PSSE

 For steady-state; no dynamics; hence, adequate for conventional grids

 Dynamic PSSE
 Incorporates measurement history/predicts states using dynamical models
 Dynamical models may be hard to obtain under high penetration of renewables

 Challenges
 Non-convexity due to nonlinear measurements (local optimality)
 Model uncertainty and non-stationarity

 Technical approaches
 Semidefinite programming relaxation [Zhu-Giannakis’11, Lavaei-Low’11]

 Online convex optimization [Kim-Wang-Giannakis’14]

G. B. Giannakis, V. Kekatos, N. Gatsis, S.-J. Kim, H. Zhu, and B. Wollenberg, “Monitoring and optimization
for power grids: A signal processing perspective,” IEEE SP Magazine, pp. 107-128, Sept. 2013. 5



SDR for batch PSSE
 Static PSSE task ( quadratic             in general)             

 SDP-based approach
 If                                   , and                  , then

 Equivalent formulation

H. Zhu and G. B. Giannakis, “Estimating the state of AC power systems using semidefinite 
programming,” in Proc. of the North American Power Symposium, Boston, MA, Aug. 2011.

 Nonconvex and generally NP-hard to solve
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Online convex optimization
 OCO framework: game between a player and an adversary

 At each time slot  

 Utility (player) chooses 

 Grid (adversary) chooses

 Player suffers loss 

 OCO goal: achieve sublinear regret

with                          as
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Online PSSE using OCO
 Dynamic PSSE as a game between the utility and the grid buses

 Goal: choose            at each time    to minimize 

S.-J. Kim, G. Wang, and G. B. Giannakis, "Online semidefinite programming for power system state 
estimation," Proc. of Intl. Conf. on Acoust., Speech, and Signal Process., Florence, Italy, May 2014.

 Online mirror descent achieves sublinear regret [Shalev-Shwartz’12]

:    stepsize
:    Bregman div.

 Choosing                                          yields  

 Completing the squares offers closed-form updates
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PSSE tests with IEEE 6-bus system

RMSE performance Real and imaginary parts of 

 Random walk dynamical model: 

 Albeit “blind” to dynamics, OCO outperforms WLS for online PSSE

9



RMSE performance

Moving-horizon PSSE

Real and imaginary parts of 

 Leveraging state-space model

 MH-based dynamic PSSE outperforms EKF tracker
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Real-time pricing for DR

 Adapt load schedules based on load prices

Issues: Privacy, robustness, real-time, 
consumer participation

Goal: smart real-time pricing by learning consumer preferences

 Adjust energy price in real-time to shape load

 Set prices differently for individual customers

 Load-price elasticity changes across consumers and time

Challenge: Learn elasticity with minimal “modeling”
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Problem formulation

 : price adjustment for customer k at time slot t

 : load level at slot t without price adjustment

Goal: minimize load variance

 Promote sparsity 
and fairness

 : elasticity of consumer k at slot t

 Aggregate adjusted load

 Model

 : load adjustment of customer k due to price adjustment 
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Two types of feedback

 Full feedback

 Partial (bandit) feedback

 Utility obtains     and                 at the end of slot t  (                             )



 Utility observes only       
at the end of slot t


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Algorithms
 Full feedback case

 Composite objective mirror descent (COMID)

 Partial feedback case

 Provably achieves              regret bound

 Need random sampling to estimate gradient of 

 Our algorithm enjoys                regret bound [Kim-Giannakis’14]

S.-J. Kim and G. B. Giannakis, “Real-time electricity pricing for demand response using online
convex optimization,” Proc. PES Conf. on Innovative Smart Grid Tech., Washington, DC, Feb. 2014.

 No need to know individual time-varying demands!
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RTP tests

Load before and after real-time DR Price adjustment (full information)

Load curves (bandit information)
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RTP with EV charging added
 Charging K=100 EVs; uniformly over 6-10pm; for 3 days

 RTP smooths the overall (base plus EV) load curve 
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Motivation for stochastic control 
 Distribution grids undergo 

transformative changes
 Active power fluctuations affect 

voltage magnitudes [25kV]

solar 
generation

over-voltage

under-voltage

grid

GridLAB-D: Pacific Northwest National Laboratory, [Online:] www.gridlabd.org/gldportal/
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Reactive power management
Problem statement: Given active injections, control reactive injections to 
minimize losses while preserving voltage magnitudes within desired range

 Typically performed by utility-owned transformers and capacitors
 discrete variables, slow response, limited lifetime [Baldick-Wu’90]

 Reactive control enabled by PV inverters [Overybye’10], [Chertkov’11]

 decentralized [Baran-Markabi’07], [Robbins-Garcia’13], [Bologniani’13]

 localized [Zhang-Garcia-Tse’13]; successive approximation [Deshmukh’12]

 convex relaxations [Lam-Zhang-Tse’12], [Dallanese-Dhople-Giannakis’14]

 Presumption: active power injections are known and constant
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Grid operation

distribution
grid

metering
state estimation controller

uncertainties

cyber delays

generation 
fluctuations

distribution
grid
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Online data-based scheme

 Stochastic approximation method (distribution-free)

 Deterministic loss minimization

Challenges: finding                   and the minimizer

 Subdifferential coincides with Lagrange multiplier

V. Kekatos, G. Wang, A. J. Conejo, and G. B. Giannakis, "Stochastic reactive power management
in microgrids with renewables," IEEE Trans. on Power Systems, pp. 3386-3395, Nov. 2015.

 Stochastic power loss minimization
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Convergence
If                                                 and                          ,it holds that

with probability 

where for or for

 Sublinear convergence in expectation and in probability

 Constant or diminishing step size

 Compact     implies finite
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Simulated active power uncertainty
 South. Cal. Edison grid: 47 buses and 10 solar generators

 Active power + AWGN; and 30sec control period with 30sec cyber delays 
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Reactive power control with real data

 Stochastic scheme tracks the ideal (unrealistic) scheme
 Lower cost at periods of local solar generation
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Leveraging stochastic constraints

 Flexibility in smart inverters

 inverters designed to work at 1.2-1.5 times higher nameplate ratings

 transient overloading possible [Moursi-Xiao-Kirtley’13, ABB’10]

 Flexibility in voltage regulation standards

 voltage magnitudes in prescribed region for 
95% of 10-min samples [EN50160 Std.] 

 two utilization ranges defined by ANSI C84.1

ANSI C84.1-2006 American National Standard for Electric Power Systems and Equipment 
Voltage Ratings (60 Herz), ANSI, 2011. 24



Stochastic energy management
Problem statement: Given consumption and renewable generation 
predictions, jointly optimize active and reactive injections to 
minimize losses while balancing the voltage profiles

 Why active power curtailment?

 voltage magnitudes sensitive to active injections in distribution grids 

 worldwide feed-in tariff opportunities (successful in Europe and US) 

 wind curtailment level: 2%-40% [NREL’14]

 Presumption: perfect predictions, deterministic interpretation of standards
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Deterministic energy management

 Presumed operating conditions
 predictions                   are precisely known
 constraints are satisfied at all times 

voltage regulation limits
inverter power limits
curtailed solar energy
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Ergodic energy management

 expectations over joint distribution of                    across all 
 average inverter usage/voltage magnitudes in tighter range
 instantaneous values in wider range (hard limits imposed)

 Relaxation of deterministic scheme, i.e.,  

G. Wang, V. Kekatos, A. Conejo, and G. Giannakis, “Ergodic energy management leveraging resource 
variability in distribution grids," IEEE Trans. on Power Systems, 2016 (http://arxiv.org/abs/1508.00654). 27



Stochastic approximation solver
 Let                          and dual variables   

 Dual problem

 Stochastic approximation under ergodicity conditions

Primal update:              minimizers of 

Dual update:                 using projected subgradient with 

28



Convergence

N. Gatsis, A. Ribeiro, and G. B. Giannakis, "A class of convergent algorithms for resource allocation
in wireless fading networks," IEEE Trans. on Wireless Comm., pp. 1808-1823, May 2010.

If                                              , it holds w.p.1 that  

Further, the incurred operational costs satisfy 

 True even if processes are correlated across time 

 Feasibility ensured almost surely; at most             away from optimal
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 SouthCalEd grid: 56 buses and 2 PVs; 30sec real-world load data

 AC branch flow model (SOCP relaxation); and LinDistFlow (LDF) approx. model

 Flexibilities

S. Barker, A. Mishra, D. Irwin, E. Cecchet, P. Shenoy, J. Albrecht, “Smart*: An open data set and tools for enabling 
research in sustainable homes,” Wrkshp. on Data Mining Apps. in Sustainability, Beijing, China, Aug. 2012 

Testing joint ergodic management
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Real-time voltage evolution

 Over-voltage effects have short duration

 Dual variable responds to over-voltages quickly
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Take-home messages

 Research outlook
 OCO/stochastic approximation for other power system optimization tasks?
 Big data grid analytics (anomalies, classification and clustering)  

Thank you!

 Online PSSE
 Nonconvexity tackled by semidefinite relaxation
 Online convex optimization learns (un)known dynamics on the fly 

 Real-time pricing for demand response  
 Online learning of consumer time-varying demands with sublinear regret

 Stochastic energy management
 Online power control to accommodate uncertainties and leverage flexibilities
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